Consequences of mRNA transport on stochastic variability in protein levels.

نویسندگان

  • Abhyudai Singh
  • Pavol Bokes
چکیده

Homogeneous cell populations can exhibit considerable cell-to-cell variability in protein levels arising from the stochastic nature of the gene-expression process. In particular, transcriptional bursting of mRNAs from the promoter has been implicated as a major source of stochasticity in the expression of many genes. In eukaryotes, transcribed pre-mRNAs have to be exported outside the nucleus and in many cases, export rates can be slow and comparable to mRNA turnover rates. We investigate whether such export processes can be effective mechanisms in buffering protein levels from transcriptional bursting of pre-mRNAs in the nucleus. For a stochastic gene-expression model with both transcriptional bursting and export, we derive an exact solution of the steady-state probability-generating function for both the nuclear and the cytoplasmic mRNA levels. These formulas reveal that decreasing export rates can dramatically reduce variability in cytoplasmic mRNA levels. However, our results also show that decreasing export rates enhance mRNA autocorrelation times, which function to increase heterogeneity in protein levels. Our overall analysis concludes that under physiologically relevant parameter regimes, a pre-mRNA export step can decrease steady-state variability at the mRNA level but not at the protein level. Finally, we reinforce previous observations that saturation in the pre-mRNA transport machinery can be an important mechanism in suppressing protein variability from underlying transcriptional bursts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of endurance training on dynein motor protein expression in Wistar male rats sciatic nerves with diabetic neuropathy

Introduction: Most neurodegenerative diseases are associated with the disruption of axonal transport and this might also be related to diabetes-associated disorders affecting the nervous system. Cytoplasmic dynein is a very important motor driving the movement of a wide range of cargoes toward the minus ends of microtubules. The effects of endurance training on dynein motor protein expression i...

متن کامل

Increase of uncoupling protein-2 expression in the ischemic rat heart

Introduction: Reactive oxygen species (ROS) have been suggested to play an important role in the myocardial damage induced by ischemia – reperfusion. One element believed to be activated by ROS and to contribute to the reduction of ROS production, is the uncoupling protein-2 (UCP2). The objective of this investigation was to explore the effect of myocardial ischemia reperfusion on cardiac UC...

متن کامل

Acute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures

Objective(s):Theneuroprotective effect of lithium has been attributed to its therapeutic action. However, the role of glial cells particularly astrocytes, and the possible interactions between neurons and astrocytes in neuroprotective effects of lithium have been disregarded. Thus, the aim of this study was to evaluate the direct effects of lithium on brain derived neurotrophic factor (BDNF) an...

متن کامل

Expression of Drug Pump Protein MRP2 in Lipopolysaccharide-Treated Rats and Its Impact on the Disposition of Acetaminophen

The drug pump protein MRP2 is a membrane drug efflux transporter widely distributed in normal and tumor tissues. Its role is thought to be crucial for the disposition of many drugs and their substrates in different tissues. In this study, we aimed to examine the effects of systematic inflammation induced by lipopolysaccharide (LPS) on the expression and function of this transporter in rats. Jug...

متن کامل

Expression of Drug Pump Protein MRP2 in Lipopolysaccharide-Treated Rats and Its Impact on the Disposition of Acetaminophen

The drug pump protein MRP2 is a membrane drug efflux transporter widely distributed in normal and tumor tissues. Its role is thought to be crucial for the disposition of many drugs and their substrates in different tissues. In this study, we aimed to examine the effects of systematic inflammation induced by lipopolysaccharide (LPS) on the expression and function of this transporter in rats. Jug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 103 5  شماره 

صفحات  -

تاریخ انتشار 2012